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Abstract— It is desirable to develop a high Equivalent 
Isotropically Radiated Power (EIRP), autonomous, 
distributed, reconfigurable, on-demand Ka/X-band 
transmit-antenna array using small satellites, for deep-
space communication (Mars and beyond). Our work 
shows that a distributed, free-flying swarm array 
composed of N CubeSats can not only be phased to 
provide a coherent beam in Ka/X-band, with 
performance (mass, power, data rate) comparable to the 
state-of-the-art Mars Reconnaissance Orbiter (MRO), 
but with N large, higher performance and data rates can 
be achieved, assuming a proper intra-swarm metrology 
system is in place. 
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1. INTRODUCTION 
Autonomous spacecraft swarms are emerging as a 

breakthrough space technology to enable low-cost, highly-
reconfigurable apertures with high impact on several areas of 
science [1] from deep space, such as imaging, remote 
sensing, solar energy collection, and communication, whose 
development are often hindered by the high cost of a single 
large satellite telecommunications system or science 
instrument. Multifunctional systems, in which multiple 
subsystems are tightly integrated into one single tile-like 
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satellite, called TileSats (see Figure 1), can further reduce 
volume, mass, and cost. Hence, the project aims to develop 
swarms of small TileSats with multifunctional capabilities to 
enable new deep space missions. This project is unique even 
because of tight and systematic integration between swarm 
guidance and control (G&C) study and impactful 
applications such as deep space communication and radar 
science, as enabled by small satellites [14, 15, 16, 17].  

 

 
Figure 1 The distributed swarm array. 

NASA also has a need for a deep space Ka-band 
capability to provide high data rate transfer, and at the same 
time for multifunctional subsystem integration in order to 
reduce the mass, volume, and power of assets being sent to 
targets of planetary exploration being executed 
autonomously [5].  While both Cassini and Juno have a Ka-
band capability, the state of the art in deep space Ka-band is 
MRO and KEPLER. Cassini transmitted and received Ka-
band for radio science. Juno has a 2.5 m Ka-band dual 
reflector antenna, also for radio science. MRO was designed 
with a full Ka-band capability, and during cruise set a new 
record (6 Mbps ) for the highest Ka-band data rate from a 
planetary mission. Though it is not used operationally, it has 
provided much of the validation needed for the deep space 
system. KEPLER has been using Ka-band routinely for its 
science downlink for many years. Hence, Ka-band telecom 
systems have been successfully demonstrated. However, they 
are limited by power and antenna size – both of which will be 
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addressed by the proposed TileSat architecture. In addition, 
Cassini used radioisotope power, while MRO, Juno, and 
KEPLER use very large solar arrays. A cluster (a closely-
packed-array) of Ka-band antennas was also proposed for the 
Jupiter Icy Moons Orbiter in 2004 [8,27] to provide a data 
rate of 10 Mbps at a maximum distance of 6.5 AU, with 1 
mrad pointing accuracy and an effective-isotropic-radiated-
power (EIRP) loss of 1.15 dB for a 3-meter diameter antenna. 
The advantages of multiple apertures compared to a single 
aperture include: a) electronic beam steering; b) spatial power 
combining; c) lower power density in the transmit system 
components; and d) graceful degradation capability. 
Therefore, it is desirable to develop an autonomous, 
distributed, reconfigurable swarm transmit array antenna 
capability that enables a high EIRP, on-demand Ka-band 
communications system. The benefits to NASA of a swarm 
system architecture made of N autonomous tiles which can 
self-organize and reconfigure would include: a) scalable 
system, upgradable to support future communications 
demands, b) less vulnerable to single point failure, c) 
repairable by replacing failed tiles, d) potential for a low cost 
capability to enable deep space Ka-band communication and 
science. 

In recent years, flight of swarms (100-1000s spacecraft) 
of FemtoSats (100-gram class spacecraft) has received 
significant attention, and more recently, formation flying and 
swarms have been identified as key technologies for 
development and demonstration. Recent work [23] has 
focused on the Granular Imager, a game-changing paradigm 
to design future space imaging systems by means of remote 
electromagnetic confinement and alignment of a swarm of 
very small reflectors (FemtoSat-size or less), and appropriate 
image reconstruction techniques, leading to enormous 
reduction in cost and system complexity. Used 
interferometrically, for example [18, 19, 20, 21, 22, 23], 
imagery or focusing can be synthesized over an enormous 
scale. This work is also centered on the novel multi-
functional TileSat design and its algorithmic and 
experimental development of autonomous in-space 
construction of a large connected antenna array for Ka-band 
deep-space communication. Typically, phased array antennas 
have a limitation both in pointing accuracy, based on the size 
and density of the individual elements, and overall cone of 
pointing.  

The goals of this task were to demonstrate that N tiles 
forming a distributed, free-flying swarm array can be phased 
to provide a coherent beam in Ka-band, and show that a 
promising radiofrequency distribution methodology is 
feasible to enable a phased array with performance (mass, 
power, data rate) comparable to MRO (Mars Reconnaissance 
Orbiter). More specifically, the objectives were to: a) 
Demonstrate feasibility of a scalable autonomous distributed 
Ka-band antenna swarm array for deep space applications; b) 
Develop concept of operations for both data link and radar 
science applications, considering both active and passive 
radars, based on electromagnetic theory and physical 
limitations; c) Design the Ka-band antenna array system for 
effective diameters of up to 10 m, capable of 0.1-1 Gb/s data 
rates, with direct relevance to interplanetary network goals; 

and d) Develop algorithmic techniques for efficient 
distributed system G&C of the swarm array, including 
innovative techniques for propellant-less-tether-based 
autonomous rendezvous and docking for highly efficient 
proximity operations and self-assembly, and model and 
simulate them for the multibody modeling and simulation of 
autonomous system reconfiguration. 

 

 
Figure 2 Centralized architecture for the swarm array, 
including DSN. 

 

 
Figure 3 Swarm array configuration with central node. 

 
2. SYSTEMS ENGINEERING CONSIDERATIONS 

A large swarm could be assembled in multiple launches 
as part of forward deployment of equipment and supplies to 
support a Mars human exploration mission. This concept of 
operations supports the swarm array scalability, maintenance 
and repair benefits discussed earlier. Note that the combined 
transmit/receive architectures could potentially support 
science activities, assist a UHF ground link to rovers on Mars 
surface, etc. during periods when high speed telecom 
capability is not needed. 

Monolithic apertures ~3m diameter are in use today on 
numerous deep space missions. Large aperture deployable 
mesh reflector antennas >9m diameter are available, but they 
are significantly more expensive, impose very demanding 
beam pointing requirements and present stowage challenges. 
Alternate large aperture technologies (membrane, gossamer, 
or inflatable type) could stow more compactly, but add 
additional risks, including lower fault-tolerance, structural 
vibrations, structural misalignments, tight planarity 
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requirements, thermo-structural stability, ageing and creep, 
continuous calibrations, deployment complexities, sub-mm-
level surface accuracy in the primary, unavoidable systematic 
manufacturing errors, material outgassing and surface 
contamination. The advantages of distributed apertures over 
single apertures are: the capability of electronic beam 
steering, spatial power combining, lower power density in the 
transmit system components, and graceful degradation 
capability. The disadvantages of distributed apertures over 
single aperture are: complexity to control and stabilize the 
structure, high-precision metrology limitations, require 
precision Attitude Determination and Control System (ACS), 
accurate clock needed for precise modulation alignment 
phasing, and possible side lobes due to geometric distortion 
in element antenna pattern. 

A swarm array would replace standard high-power 
amplifier plus large antenna architecture. In this case, the 
antenna data rate scales with swarm size. It needs a 
centralized node to coordinate and manage the overall system 
(Fig. 2). This system could use a UHF link to distribute time, 
phase, etc. to array elements, a wireless beamformer and an 
RF or Laser metrology system. RF, IF, or digital are three 
beamformer options (Fig. 3). Technical challenges include: 
a) the need for phased array coherence: the key is to use 
system such as Phased-Locked Loops (PLL) to synchronize 
beamformer signals; b) the need to use signal such as a pilot 
beacon from the DSN (Deep Space Network) to provide 
synchronization of carrier signal; c) RF or laser metrology for 
pulse-to-pulse alignment; and d) Timing and signal 
synchronization.  

Multiple reference frames are involved in determining 
the pointing needs for a swarm away. As a reference, Figure 
4 shows the various mechanical reference frames that would 
be involved in an antenna link budget, and Figure 5 shows 
the kinematics chain of the reference frames for monolithic 
and swarm array.  

The systems engineering approach in this study included 
two main tasks: a) Systems Engineering of Antenna Array 
Concept, and b) Swarm Dynamics and Real-Time 
Reconfiguration and Steering of Array. Leveraging previous 
Ka-band system studies from Mars [1], previous space 
interferometry, formation flying work, and MRO specs, we 
conducted antenna sensitivity analysis and developed a 
preliminary Ka-band link budget (Table 1). We also 
investigated available metrology [3] (Table 2) and array 
timing/phasing techniques. These data clearly indicate that 
optical metrology is substantially better than RF. 

As a test case to evaluate the performance of a swarm 
array relative to a large single satellite communications 
system, we compared MRO to a hypothetical swarm array 
composed of CubeSats similar to MarCO [27], except 
operating at Ka-band instead of X-band (see Table 3). Each 
CubeSat is assumed to have an IRIS radio and 30 x 60 Ka-
band reflectarray [2]. A chief/director spacecraft is still 
needed, and would handle UHF telecom relay and 
coordination with all “deputy” spacecraft. The link budget in 
Table 1 shows that the single satellite system and a swarm of 
~30 CubeSats are very comparable. The key differences 
between these two systems are transmit power and antenna 

gain, the two parameters that scale with the number of 
CubeSats in the swarm. To explore this, Figure 6 shows the 
impact of swarm size on EIRP and relative data rate. As noted 
earlier, the breakeven point is about 30 CubeSats. More 
importantly, tripling the number of CubeSats to N=100 
results in a 10X increase in data rate. Since total power 
radiated and antenna gain increase in proportion to the 
number of CubeSats, EIRP (power x gain) increases as the 
square of the number of CubeSats. This comparison clearly 
shows that high EIRP is feasible with swarm array. 

 

 
Figure 4 Frames involved in antenna error budget. 

 

 
Figure 5 Kinematics chain of frames for monolithic and 

swarm array. 

It is also of interest to evaluate the performance increase 
that could achieved by increasing the MRO antenna size. The 
only practical option to achieve very large (>6m) antenna 
apertures is a deployable mesh reflector such as the 
AstroMesh© or Harris folded rib antenna [9, 10, 11]. Table 4 
shows a comparison of MRO with current antenna and a 9.5m 
mesh reflector, which results in a 10X increase in data rate 
(see Figure 7). However, there is a significant cost increase 
relative to MRO due to the deployable antenna, increased 
mass and stowage requirements. Further, this approach may 
require a larger bus and possibly a fine beam electronic 
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pointing system to accurately aim the ~0.06 degree high gain 
antenna beam towards a DSN ground station on Earth [9].  

Several technology developments are needed to achieve 
the goal of enabling a practical swarm array antenna system. 
The most critical items are appropriate timing/sequencing 
algorithms to cohere array and laser metrology [3] to 
determine relative s/c positions with sufficient accuracy to 
carry out the phasing of the array. Phase synchronization, as 
practiced in the DSN, can be used here and time 
synchronization is only needed for symbol rate 
synchronization. This is discussed in more detail in the 
sections below. 

 

Table 1 Telecomm link budget comparing a swarm array of 
30 Ka-band CubeSats to a Monolithic system (MRO). 

 
 

Table 2 State-of-the-art in metrology techniques for small 

spacecraft. 

 
 

Table 3 System parameters for a comparison of MRO 
telecom system to hypothetical MarCO-like Ka-band swarm. 
Data from RF and optical metrology are taken from [3]. 

 
 

 
Figure 6 A System parameters for a comparison of MRO 

telecom system to hypothetical MarCO-like Ka-band 
swarm. Antenna array EIRP and data rate vs. number of 

agents, and comparison with MRO. 

 
 

Table 4 Parameters used to estimate the improvement of 
MRO telecom system by replacing the 3m composite 
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reflector with a 9.5m AstroMesh reflector. 

 

 
Figure 7 EIRP and data rate vs. monolithic antenna 

diameter, and comparison with MRO. 

 
3. ARRAY GEOMETRIC ERROR ANALYSIS 

The most critical factor in achieving coherence in a 
Swarm Array is accurate alignment of the phase of the 
transmitted carrier frequency from each element, or 
“deputy”, in order to form the desired array beam in the far-
field of the deputy’s antennas. It is assumed that the element 
antennas have been mechanically steered to point in the 
direction of the intended target, and that only phasing of the 
carrier remains in order to form an array beam centered on 
the target. A similar procedure is required when the Swarm 
Array is used to receive a plane-wave signal from a distant 
transmitter, except in this case the phases of the received 
carriers must be aligned to form the array pattern in the 
desired receive direction. In both cases, the array phase must 
be first calibrated to phase up the array, then adjusted 
continuously as the geometry changes due to orbital 
dynamics. It will be assumed here that orbital dynamics are 
slow and known well enough to enable predicting and 
adjusting the differential phase between elements to the 
required accuracy, as the geometry changes. In this section a 
geometric model of the Swarm Array will be developed, error 
sources identified, and their impact on Swarm Array 
performance determined. Focus will be on the transmit mode 
of operation, however the analysis applies equally to receive 
mode as well. 

The Swarm Array geometry is shown in Figure 8, in 
Cartesian coordinates centered on the “chief” element, which 
is taken to be the reference element in the array, with 
sufficient storage, computing power and metrology 
capability to enable maintaining and adjusting the state of the 
array as conditions change. It will be assumed that the array 
elements, or deputies, are all phased up with respect to the 
carrier phase of the chief, such that the carriers from each 
element are in phase in the far-field of the array.  The chief 
element is located at the center of the Cartesian coordinate 
system, defined by the orthogonal unit vectors , 

where the  component is parallel to the “line-of-sight” (or 
LOS) vector to the target. In an array of N elements, including 
the chief, there are N-1 deputies, designated in  Figure 8 as 
deputy #1, deputy #2, and so on, each located at a bearing and 
distance defined by the corresponding position vectors 

. However, in our model the stored 
locations of the deputies in the chief’s computer may be 
slightly different, given by the position vectors 

, hence there is an error between the stored 
positions and the true positions, given by the error vector 

. These errors will cause the deputy’s phases 
to be misadjusted, reducing the array gain over that 
achievable with ideal phasing. We proceed to determine the 
magnitude of these errors based on a simple model for the 
error distribution, using actual values for the error variance in 
practical state-of-the-art range and bearing metrologies. 
Finally, the error variances will be used to evaluate array loss 
due to position errors, using several different candidate 
metrologies as examples. 

The position vectors of the deputies in Cartesian 
coordinates are  , 

, …, whereas the error vectors 

can be expressed as  ,  

, … . True position vectors are the 
vector sum of the stored position and error vectors, yielding 

,    .  For a compact Swarm Array 
operating over interplanetary distances, only the projection of 
the position vectors onto the LOS vector contribute to array 
phase, since the array diameter is much smaller (by about 20 
orders of magnitude) than the distance to the target. Referring 
to  Figure 8, this can be seen by writing out the Euclidian 
distance from the first deputy to the target in terms of the 
stored vector and error vector components as in equation (1),  
 

ˆ ˆ ˆ( , , )i j k
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(1) 

and recognizing that due to the enormous distances between 
planets (~ 1 AU) the second and third terms inside the 
normalized square-root are O(10-10) and hence can be 
ignored. Generalizing to the n-th element, the range 
difference to the target between the n-th deputy and the chief, 

, is the projection of the n-th position vector  onto 

the LOS unit vector :  
.  Similarly, the phase error of the n-th array element relative 
to the phase of the chief is a scaled version of the projected  
range error, , which is in turn the projection of the error 

vector onto the LOS unit vector : 
. 

In the language of spacecraft metrology, errors are 
typically specified in terms of “range” and azimuth/elevation 
(AZ,EL) “bearing” components, implying the use of 
spherical instead of Cartesian coordinates. Therefore, in 
order to compute the projection of the error vector onto the 

LOS, assumed to be in the direction, it is necessary to first 
convert from spherical to Cartesian coordinates.  

The relationship between Cartesian and spherical 
coordinates is illustrated in  Figure 9, where the true position 
vector is shown in the reduced two-dimensional  
plane for simplicity.  In general, the true position vector can 
be described in Cartesian coordinates as 

.  In spherical coordinates, the true 

position vector  is described in terms of the three locally 

orthogonal spherical coordinates  as 

. Adding the error vector  to 

the true position vector  yields the stored position vector 
.  The 

stored position vector can be expressed in spherical 
coordinates as .  

 
 
 
 
 
 
 
 
 

 
Figure 8  Swarm array geometry and definition of key vector components, in Cartesian coordinates. In this hypothetical 
scenario the Swarm Array is in orbit around Mars, transmitting to Earth at a distance of roughly 1 AU.
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î k̂central
element
“chief”

1p
!

1r
!1

!
P

deputy #1

2p
!

1r
!

2

!
P

deputy #2

11

ˆ

1.5 10  m
R

R
=

@ ´

R k
!

= -1 1R R
!! !
P

approximate swarm array
diameter

error vector

R is the scalar distance
along the LOS vector



 

 7 

 

 
 Figure 9 Position and error vectors in spherical coordinates. 

 

In general, the conversion between Cartesian and 
spherical coordinates can be described via the following 
matrix transformation, which specifies the Cartesian 
coefficients  in terms of spherical 

coordinates , and vice versa, as 

 and respectively. The 

transformation matrices and are  

              

         

The position vectors in the chief spacecraft’s 
computer are stored in Cartesian coordinates, which can also 
be expressed in terms of spherical coordinates referred to the 
underlying Cartesian coordinate system. For example, the true 
position vector can be expressed in spherical coordinates as 

, 

 

where  are the original Cartesian coefficients. 

Referring to  Figure 9, we can see that the spherical 
coordinates of the stored position vector can be expressed in 
spherical coordinates as  

                   
  

Assuming the errors in range and bearing are small enough to 
validate the approximations and 
in the matrix transformations, it follows that  

, 

and therefore  .  

Within the bounds of the above approximations, the error 
vector in spherical coordinates is simply the matrix 
transformation of the error coordinates in Cartesian 
coordinates. Likewise, if the spherical coordinates are 
specified, the inverse transformation yields the Cartesian 

error coordinates . 

Metrology errors are typically expressed in terms of 
range and bearing errors as shown in Fig. 2, where current 
state-of-the-art RMS errors are specified for both RF and 
optical metrologies. The spherical error components are 
inherently random variables. We are ultimately interested in 
finding the projection of the total RMS error onto the LOS 
direction vector , which was shown to be the relevant error 
source affecting Swarm Array losses when operating over 
interplanetary distances. This can be accomplished by first 
conditioning on the error components, determining the 
projection of the given error-corrupted position vector onto 
the direction, and averaging the resulting projected vector 
to determine the relevant component of total RMS error.  The 
projection of the total error vector expressed in spherical 
coordinates, , onto the LOS direction vector can be 
determined via the inverse transformation as 

. Note that only the 

range and elevation vectors project onto the direction, 
whereas the azimuth angle does not. This is because the 
azimuth component rotates the position vector around the 
LOS direction to form a cone whose tip is at the origin, hence 
its projection onto the vector is independent of the azimuth 
angle.  This implies that any bearing error in the azimuth 
direction will not contribute to the projection, hence can be 
ignored since it does not impact Swarm Array performance. 
Only the range errors and elevation errors contribute to the 
projected error. 

The relevant range and bearing errors, 
 respectively, are independent random 

variables, having been generated by different instruments.  
Since the range and bearing errors are independent their 
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variances add, hence the total variance is the sum of the 
individual variances, scaled by the elevation-dependent 
coefficients. Therefore, the total elevation-dependent 
variance can be expressed as , 

where  and 

. The RMS errors are measured 
in meters, which need to be converted to radians of carrier 
phase in order to determine array loss. For a carrier 
wavelength of  meters, a total projected RMS error of 

 meters yields an RMS error of  in radians, 

or a total error variance of in

.  

Using the results for array loss in terms of the phase 
error variance derived in [4], and assuming that the phase 
error variance is statistically identical for each of (N-1) 
deputies, the arrayed power  can be expressed as 

, where  is the 
received power from a single deputy. The ideal power for a 
perfectly phased array of N antennas corresponding to the 
case  is clearly , hence the array loss due 
to imperfect phasing can be expressed as 

. Note that in the limit 

as  the array loss approaches  
As an example, consider the RF measurement errors in Fig. 8 
for an X-band wavelength of 4 cm, or 0.04 m, at an elevation 
of 45 degrees where . Using the 
values of the range and bearing variances from Fig. 2 of 

 and , 

it follows that   
. 

Scaling  for squared radians in fractional wavelengths yields 

. Substituting into the expression for array loss for an array of 
N = 7 elements yields an array loss of 

 

or  dB.  For this example, the asymptotic 

limit as  becomes  or 

 dB. Array power and array loss for RF 
metrology is shown in Figure 10, and in Figure 11 for Optical 
metrology, assuming an elevation angle of .  

 
Figure 10  Array power and array loss as a function of 

number of elements for RF metrology. 

 
4. INTEGRATED MODELING AND SIMULATION 

In support of the systems engineering analysis 
describe above, we have developed and tested a modeling and 
simulation environment for an antenna array in Mars orbit 
which integrates the orbital dynamics of the swarm and 
models the array electromagnetics. Previous related work is 
in [12, 13].  Figure 12 shows the orbital geometry of the 
swarm problem. Figure 13 shows a snapshot of the three-
dimensional motion of the swarm in Mars’ orbit. The 
equations of motion of the swarm are derived in [24], but are 
summarized here next. They include the equations of motion 
of the Chief spacecraft, including oblateness (J2) and 
aerodynamic drag, as follows (r=position, v=velocity, h=orbit 
momentum, W=longitude of ascending node, i=inclination, 
q=true anomaly, C=aerodynamic constant, kJ2=oblateness 
coefficient): 
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Figure 11 Array power and array loss as a function of number 
of elements for Optical metrology. 

 
 
𝑟̇ = 𝑣%	, 

𝑣̇% = −
𝜇
𝑟* +

ℎ*

𝑟- −
𝑘/*
𝑟0
(1 − 3 sin* 𝑖 sin* 𝜃) − 𝐶‖𝑉=‖𝑣%	, 

ℎ̇ = −
𝑘/* sin* 𝑖 sin2𝜃

𝑟- − 𝐶‖𝑉=‖(ℎ − 𝜔@𝑟* cos 𝑖)	, 

Ω̇ = −
2𝑘/* cos 𝑖 sin* 𝜃

ℎ𝑟- −
𝐶‖𝑉=‖𝜔@𝑟* sin 2𝜃

2ℎ 	, 

𝚤̇̇ = −
𝑘/* sin 2𝑖 sin2𝜃

2ℎ𝑟- −
𝐶‖𝑉=‖𝜔@𝑟* sin 𝑖 cos* 𝜃

ℎ 	, 

𝜃̇ =
ℎ
𝑟* +

2𝑘/* cos* 𝑖 sin* 𝜃
ℎ𝑟- +

𝐶‖𝑉=‖𝜔@𝑟* cos 𝑖 sin 2𝜃
2ℎ 	. 

 
and the equations of motion of the N deputy spacecraft as 
follows [25] (x,y,z=deputy position components in orbiting 
frame relative to chief, wx, wz=orbital frequencies): 
 
𝑥̈H = 2𝑦̇H𝜔J − 𝑥HK𝜂H* − 𝜔J*M + 𝑦H𝛼J − 𝑧H𝜔%𝜔J

− K𝜁H − 𝜁M sin 𝑖 sin𝜃 − 𝑟K𝜂H* − 𝜂*M
− 𝐶HQ𝑉=HQK𝑥̇H − 𝑦H𝜔JM
− K𝐶HQ𝑉=HQ − 𝐶‖𝑉=‖M𝑣% 

𝑦̈H = −2𝑥̇H𝜔J + 2𝑧̇H𝜔% − 𝑥H𝛼J − 𝑦HK𝜂H* − 𝜔J* − 𝜔%*M + 𝑧H𝛼%
− K𝜁H − 𝜁M sin 𝑖 cos𝜃
− 𝐶HQ𝑉=HQK𝑦̇H + 𝑥H𝜔J − 𝑧H𝜔%M

− K𝐶HQ𝑉=HQ − 𝐶‖𝑉=‖M R
ℎ
𝑟 − 𝜔@𝑟 cos 𝑖

S 

𝑧̈H = −2𝑦̇H𝜔% − 𝑥H𝜔%𝜔J − 𝑦H𝛼% − 𝑧HK𝜂H* − 𝜔%*M
− K𝜁H − 𝜁M cos 𝑖 − 𝐶HQ𝑉=HQK𝑧̇H + 𝑦H𝜔%M
− K𝐶HQ𝑉=HQ − 𝐶‖𝑉=‖M𝜔@𝑟 cos 𝜃 sin 𝑖 

 
where the following terms are defined as: 
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𝑟0 	, 

𝜁H =
2𝑘/*𝑟HT
𝑟HU

	, 

𝜂* =
𝜇
𝑟- +

𝑘/*
𝑟U −

5𝑘/* sin* 𝑖 sin* 𝜃
𝑟U 	, 

𝜂H* =
𝜇
𝑟H-
+
𝑘/*
𝑟HU
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𝑟HT = K𝑟 + 𝑥HM sin 𝑖 sin𝜃 + 𝑦H sin 𝑖 cos𝜃 + 𝑧H cos 𝑖	, 
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2ℎ𝑣%
𝑟- −

𝑘/* sin* 𝑖 sin 2𝜃
𝑟U 	, 

𝛼% = −
𝑘/* sin2𝑖 cos𝜃

𝑟U +
3𝑣%𝑘/* sin 2𝑖 sin 𝜃

ℎ𝑟0

−
8𝑘/** sin- 𝑖 cos 𝑖 sin* 𝜃 cos𝜃

ℎ*𝑟Z 	. 
 

 
 

 
Figure 12 Orbital geometry of swarm problem. 

 

 
Figure 13 Three-dimensional motion of swarm in Mars’ 
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orbit. 

 
The array is modeled as a collection of N rectangular 

patches [25], where the electric field of each patch has the 
following components (k=2p/l, l=wavelength) 
 

        
 

If is Fn(qn,fn) the element pattern function, (An,bn) are the 
amplitude and phase, the total field emitted by the array at a 
generic point in polar coordinates (rn,qn,fn) is  
 

 
Figure 14 shows the three-dimensional swarm with pencil 
beam from electromagnetic signal, and Figure 15 shows a 
polar plot of electric field emitted by array. 

 

 
Figure 14 Three-dimensional swarm with pencil beam from 

electromagnetic signal. 

 

 
Figure 15  Polar plot of electric field emitted by array. 

 
We have also developed swarm reconfiguration 

algorithms with functionalities including collision-avoidance, 
and a simulator for tethered proximity operations, assuming 
the swarm elements are mechanically connected. A 
distributed guidance and control algorithm for the 
reconfiguration of the robotic swarm is introduced in [6, 26], 
that allows to solve for the collision-free trajectory 
generation. Figure 16 shows the reconfiguration of N=10 
spacecraft from a stack into a paraboloidal shape. Figure 17 
shows collision-free trajectories for N=10 elements, 
considering an objective function that minimizes the control 
efforts. Finally, Figure 18 shows the relative angle between 
tethers for open and closed configurations of the swarm away, 
assuming the elements of the array are connected by tethers 
[7], indicating a more precise system response in the closed 
configuration. 

 
 

 
Figure 16  Reconfiguration of N=10 spacecraft from a stack 

into a paraboloidal shape. 
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Figure 17 N=10 elements collision-free trajectories, 

considering an objective function that minimizes the control 
efforts. 

 

 
Figure 18 N=10 elements collision-free trajectories, 

considering an objective function that minimizes the control 
efforts and the overall distance. 

 

 
Figure 19 Relative angle between tethers for open and 

closed configuration. 

5. CONCLUSIONS 
NASA has a need for deep space high data rate transfer, 

and at the same time for multifunctional subsystem 
integration in order to reduce the mass, volume, and power of 
autonomous assets being sent to targets of planetary 
exploration.  This capability will improve entire classes of 
future JPL missions, with benefits to key challenges in 
multiple directorates. Combining transmit and receive 
architectures would also benefit science.  A large swarm 
could be assembled in multiple launches, possibly as part of 
launches sent in preparation for a future human exploration of 
Mars.  On-going miniaturization in power electronics would 
make a compelling business case.  The main conclusion of 
this study is that a high data rate downlink swarm array at 
Mars is feasible.  Approximately 30 MarCO CubeSats can 
achieve MRO-level performance, and ~100 MarCO CubeSats 
achieve 10X MRO-level performance.  Spacecraft could be 
incrementally added to the swarm, with each launch. 
Therefore, no dedicated launch would be necessary. Future 
work includes the further development of metrology options: 
current RF and Optical metrology options are for big 
spacecraft (100-kg class)[4]; and we need to further develop 
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metrology options for small spacecraft. Also, time 
synchronization options need to be developed, as they closely 
relate to the metrology.   

 
APPENDIX 

Here we present an alternate derivation of the swarm 
array geometric error analysis.  Let 𝑑 represent the distance 
from the chief to the deputy, and 𝛥𝑑 represent its error. Let 𝜃] 
represent the bearing angle from the chief to the deputy, and 
𝛥𝜃] represent its error. Let 𝜓_  represent the bearing angle 
from the chief to the Earth, and 𝛥𝜓_  represent its error. The 
reference frame and variables are shown in the figure below.  

 
 

 
 

The time delay distance between the signal from chief 
and deputy to reach Earth is given by the dot product between 
(𝑑 + 𝛥𝑑)(𝑐𝑜𝑠(𝜃] ± 𝛥𝜃])𝚤̂ + 𝑠𝑖𝑛(𝜃] ± 𝛥𝜃])𝚥̂) and 
(𝑐𝑜𝑠(𝜓_ ± 𝛥𝜓_)𝚤̂ + 𝑠𝑖𝑛(𝜓_ ± 𝛥𝜓_)𝚥)̂, which is given by:  

 
Time	Delay	Distance

= (𝑑 + ∆𝑑)𝑐𝑜𝑠(𝜃] − 𝜓_)
+ 𝑑(∆𝜃] + ∆𝜓_)𝑠𝑖𝑛(𝜃] 	+ 𝜓_),	

using small angle approximations and neglecting higher-order 
terms. Therefore, the desired phase difference and timing 
difference are given by: 
Desired	Phase	Difference

=
(𝑑 + ∆𝑑)𝑐𝑜𝑠(𝜃] − 𝜓_) + 𝑑(∆𝜃] + ∆𝜓_)𝑠𝑖𝑛(𝜃] 	+ 𝜓_)

𝜆 	, 
Desired	Timing	Difference

=
(𝑑 + ∆𝑑)𝑐𝑜𝑠(𝜃] − 𝜓_) + 𝑑(∆𝜃] + ∆𝜓_)𝑠𝑖𝑛(𝜃] 	+ 𝜓_)

𝑐 	, 
 
where 𝜆 is the wavelength and 𝑐 is the speed of light.  
 Assuming that the errors are Gaussian random 
variables, given by:  

Δ𝑑	~	𝒩(𝜇z{, 𝜎z{* )	, 
Δ𝜃]	~	𝒩K𝜇z}~, 𝜎z}~

* M	, 
Δψ�	~	𝒩K𝜇z��, 𝜎z��

* M	, 
the time delay distance is given by: 

Time	Delay	Distance	~	𝒩 �𝑑 + 𝜇z{
+ 𝑑K𝜇z}~ + 𝜇z��M, 𝜎z{

*

+ 𝑑*K𝜎z}~
* + 𝜎z��

* M�	
 
Therefore, the phase difference between the chief and deputy 

spacecraft, which is represented as 𝒩K𝜇}�, 𝜎}�
* M, is given by:  

 
Phase Difference (in radians)  ~ 

 

	
 

Uplink Array power, for statistically independent phases, 
is computed as [4]: 

Net	Power = 𝑃�𝑁 +𝑁(𝑁 − 1)𝑒����
�
�	, 

where 𝑁 is number of agents and 𝑃 is the power transmitted 
by each agent. The power loss in dB is given by: 

Power	Loss	(dB) = 10 log��
�𝑁 +𝑁(𝑁 − 1)𝑒����

�
�

𝑁*  
The power loss for different wavelengths for different 
methods of metrology are shown above. 
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